Mapping of maurotoxin binding sites on hKv1.2, hKv1.3, and hIKCa1 channels.

نویسندگان

  • Violeta Visan
  • Ziad Fajloun
  • Jean-Marc Sabatier
  • Stephan Grissmer
چکیده

Maurotoxin (MTX) is a potent blocker of human voltage-activated Kv1.2 and intermediate-conductance calcium-activated potassium channels, hIKCa1. Because its blocking affinity on both channels is similar, although the pore region of these channels show only few conserved amino acids, we aimed to characterize the binding sites of MTX in these channels. Investigating the pH(o) dependence of MTX block on current through hKv1.2 channels, we concluded that the block is less pH(o) - sensitive than for hIKCa1 channels. Using mutant cycle analysis and computer docking, we tried to identify the amino acids through which MTX binds to hKv1.2 and hIKCa1 channels. We report that MTX interacts with hKv1.2 mainly through six strong interactions. Lys(23) from MTX protrudes into the channel pore interacting with the GYGD motif, whereas Tyr(32) and Lys(7) interact with Val(381), Asp(363), and Glu(355), stabilizing the toxin onto the channel pore. Because only Val(381), Asp(363), and the GYGD motif are conserved in hIKCa1 channels, and the replacement of His(399) from hKv1.3 channels with a threonine makes this channel MTX-sensitive, we concluded that MTX binds to all three channels through the same amino acids. Glu(355), although important, is not essential in MTX recognition. A negatively charged amino acid in this position could better stabilize the toxin-channel interaction and could explain the pH(o) sensitivity of MTX block on current through hIKCa1 versus hKv1.2 channels.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Observation of σ-pore currents in mutant hKv1.2_V370C potassium channels

Current through the σ-pore was first detected in hKv1.3_V388C channels, where the V388C mutation in hKv1.3 channels opened a new pathway (σ-pore) behind the central α-pore. Typical for this mutant channel was inward current at potentials more negative than -100 mV when the central α-pore was closed. The α-pore blockers such as TEA+ and peptide toxins (CTX, MTX) could not reduce current through ...

متن کامل

The Antibody Targeting the E314 Peptide of Human Kv1.3 Pore Region Serves as a Novel, Potent and Specific Channel Blocker

Selective blockade of Kv1.3 channels in effector memory T (T(EM)) cells was validated to ameliorate autoimmune or autoimmune-associated diseases. We generated the antibody directed against one peptide of human Kv1.3 (hKv1.3) extracellular loop as a novel and possible Kv1.3 blocker. One peptide of hKv1.3 extracellular loop E3 containing 14 amino acids (E314) was chosen as an antigenic determinan...

متن کامل

Maurotoxin: a potent inhibitor of intermediate conductance Ca2+-activated potassium channels.

Maurotoxin, a 34-amino acid toxin from Scorpio maurus scorpion venom, was examined for its ability to inhibit cloned human SK (SK1, SK2, and SK3), IK1, and Slo1 calcium-activated potassium (K(Ca)) channels. Maurotoxin was found to produce a potent inhibition of Ca(2+)-activated (86)Rb efflux (IC(50), 1.4 nM) and inwardly rectifying potassium currents (IC(50), 1 nM) in CHO cells stably expressin...

متن کامل

Calmodulin mediates calcium-dependent activation of the intermediate conductance KCa channel, IKCa1.

Small and intermediate conductance Ca2+-activated K+ channels play a crucial role in hyperpolarizing the membrane potential of excitable and nonexcitable cells. These channels are exquisitely sensitive to cytoplasmic Ca2+, yet their protein-coding regions do not contain consensus Ca2+-binding motifs. We investigated the involvement of an accessory protein in the Ca2+-dependent gating of hIKCa1,...

متن کامل

Maurotoxin: A Potent Inhibitor of Intermediate Conductance Ca -Activated Potassium Channels

Maurotoxin, a 34-amino acid toxin from Scorpio maurus scorpion venom, was examined for its ability to inhibit cloned human SK (SK1, SK2, and SK3), IK1, and Slo1 calcium-activated potassium (KCa) channels. Maurotoxin was found to produce a potent inhibition of Ca -activated Rb efflux (IC50, 1.4 nM) and inwardly rectifying potassium currents (IC50, 1 nM) in CHO cells stably expressing IK1. In con...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular pharmacology

دوره 66 5  شماره 

صفحات  -

تاریخ انتشار 2004